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Abstract An accurate technique of monitoring insect pest populations is very crucial in crop 
protection. Traditionally, this is achieved by manual detection of infested area and manual 
counting of the target species. However, it is a time-consuming task that might be useless if the 
target species has migrated after the resultant manual counting. Thus, this paper attempted to 
explore and discuss the imaging systems developed in recent years for monitoring, detecting, and 
counting insect pest populations in various infested areas, and the advancements made around 
the world. The developed systems were structured into standalone systems, network-based 
imaging systems, and Red, Green and Blue (RGB) vision and thermographic imaging. Recent 
trends show that standalone and networked imaging systems are the most prominent technologies 
in insect detection and counting for industry adoption. Standalone and networking imaging 
technologies each possess distinct characteristics and can be employed to monitor insect pest 
populations according to the user's needs and preferences. In all these systems, robustness of the 
camera setup is critical because it dictates the accuracy of detection for a particular target species. 
From both research and commercialization standpoints, there is needed for further exploration of 
imaging technology in insect pest detection and counting. The aim is to streamline traditional 
labor-intensive and costly methods. 
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Introduction 
 

In agriculture, it is well-known that insect pests result in production losses. 
Therefore, monitoring and control of their population is crucial. Insect pests are 
a leading cause of crop yield losses worldwide, making pest management 
essential for ensuring food security and sustaining farming income (Otoniel et 
al., 2012). Najib et al. (2018a) estimated that global vegetable production losses 
reach 27.7%, with 8.7% directly caused by insect pests, which could lead to even 
greater losses if not effectively controlled. According to the Food and Agriculture 
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Organisation (FAO) (Travis et al., 2018), annual global losses in vegetable 
production due to insects alone are estimated at 15–20% during vegetable 
cultivation and 18–20% during stowage. As its name suggests, Integrated Pest 
Management (IPM) is a method employed in agriculture to manage pest 
population by monitoring and recording the size of a target species population 
(Otoniel et al., 2012 and Najib et al., 2018a). By gathering information on an 
insect population’s dynamics and also information on environmental factors such 
as physical, chemical, and biological factors, a precise and appropriate insect pest 
control regime can be carried out at a precise time and particular field location. 
For example, spot-application (SA) of pesticides has been carried out at a field 
of wild blueberry plants to eradicate hair cap moss, which shows that all stem 
thickness, stem tallness, and the number of stem branches were significantly 
increased after the application. The percentage of healthy plants was also higher, 
with an increase of 41.0% for uniform application (UA) and 57.8% for spot 
application (SA), compared to the control (Travis et al., 2018). However, the 
execution of SA for insect pest is arguably very challenging because insects are 
highly mobile throughout the farm/field, making precision application of 
pesticide difficult (Otoniel et al., 2012).  

Agriculture remains a vital sector for many countries, providing the 
primary source of food for the global population. However, it faces a major 
challenge: increasing productivity and quality while ensuring sustainability 
through the responsible use of natural resources, reducing environmental 
degradation, adapting to climate change, minimizing the ecological impact of 
plant protection products, and preventing the introduction and spread of 
quarantine diseases. As a result, there is growing interest in emerging law-
making, scientific, non-invasive, and technological gears for detecting pest and 
diseases in crops (Najib et al., 2018b). 

Advanced technologies, including skilful systems, artificial intelligence 
(AI), and computer vision (CV), have demonstrated effectiveness in tackling 
challenges across a wide range of applications. These technologies have been 
successfully employed in palm, rice, corn, grape, and banana farms for the 
detection of various diseases (Travis et al., 2018; Corley and Tinker, 2003). 
Notably, recent studies (Yigit et al., 2019) have utilized AI techniques to estimate 
visual features of diverse plant leaves using image processing, highlighting the 
potential utility of artificial vision techniques in agriculture when coupled with 
thorough training and authentication of virtual tools. Comparable investigations 
have been conveyed by various researchers (Tavakoli et al., 2021; Aakif and 
Faisal, 2015; Chaki et al., 2020; Horaisova and Kukal, 2016 and Wang et al., 
2020). 
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Currently, monitoring of pests and crop diseases is increasingly conducted 
through remote sensing at the leaf, canopy, and field levels. Hyperspectral and 
multispectral airborne data have been applied to monitor diseases in crops such 
as tomatoes and rice (Huijser et al., 2005). Researchers (Eli-Chukwu, 2019 and 
Bannerjee et al., 2018) have conducted review studies outlining the key variables 
influencing plant diseases in agriculture and how AI techniques can be practical, 
underscoring the significance of soil type and climatic factors (temperature and 
humidity) in the agricultural sector. 

In farming systems in Nigeria, damage by insect pests is a primary limiting 
factor to increased vegetable production, leading to low-quality and poor yields 
(Corley and Tinker, 2003). In China, a cumulative area of major crop pests and 
diseases reached 300 million hectares in 2020, with an expected annual rise. 
(Wang et al., 2020).  Malaysia, for instance, grapples with outbreaks of the 
bagworm (Psychidae) as a major insect pest in oil palm plantations. A moderate 
bagworm infestation, causing 10-50% leaf damage, has been reported to result in 
a 43% reduction in yield, estimating a significant economic impact of RM 180 
million in 2020 due to bagworm attacks (Najib et al., 2021a) 

It is vital to conduct a census to directly estimate and control insect pests’ 
numbers effectively. The census usually involves the superficial check for signs 
of insect pest and a more thorough assessment or ‘enumeration’, i.e., to determine 
insect population density in unit areas (Corley and Tinker, 2003). Basically, 
monitoring involves inspecting or scouting an area to identify the pests present, 
assess their population levels, and determine the extent of harm they are causing. 
The principle working operation of insect pests’ detection is illustrated as in 
Figure 1. 

 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
Figure 1. Conceptual diagram for insect pests’ detection (Wang et al., 2020) 
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The principle of insect pest detection for devices often involves the use of 
imaging technology and machine learning algorithms.  

Imaging Technology: RGB or Thermographic Imaging: Devices capture 
images, either in standard RGB (Red, Green, Blue) or thermographic (infrared) 
spectrum, to visualize insects and their activities. 

Camera Setup: The camera setup is crucial, considering factors such as 
resolution, focus, and object distance to ensure clear and accurate imaging. 

Data Acquisition: Image Capture: The device captures images of the 
monitored area, which may include crops, stored grains, or other agricultural 
settings. 

Data Preprocessing: Raw images undergo preprocessing to enhance 
features, eliminate noise, and prepare them for analysis. 

Insect Detection Algorithm: Machine Learning Algorithms: Various 
machine learning techniques, such as deep learning or traditional computer 
vision methods, are employed to detect and identify insects in the captured 
images. 

Training Data: Algorithms are trained using a dataset of labeled images, 
allowing the system to learn and recognize patterns associated with different 
insect species. 

Autofocus and Zoom (Enhancement):Autofocus System: Some advanced 
systems incorporate autofocus capabilities to enhance accuracy. After detecting 
a potential target insect, the system can automatically adjust focus for clearer 
imaging. 

Zoom Functionality: Zoom features may be employed to magnify and 
focus on detected insects, improving the precision of identification. 

Integration and Automation:Integration with Agricultural Systems: Insect 
detection devices can be integrated into larger agricultural systems for real-time 
monitoring. 

Automation: The goal is often to automate the detection and counting 
processes, reducing the reliance on labor-intensive and costly manual methods. 

Continuous Improvement: Feedback Mechanism: Continuous monitoring 
and feedback contribute to the improvement of detection algorithms over time. 

Technological Advancements: As new technologies emerge, they can be 
applied to improve the accuracy, speed, and effectiveness of insect pest detection 
devices. 

In essence, the principle revolves around employing advanced imaging 
technologies, utilizing machine learning for insect detection, and continuously 
refining and advancing these systems for more effective pest monitoring in 
agriculture (Gomes and Borges, 2022). 
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Thermographic and RGB imaging methods for insect pest detection 
 

Interest in the application of thermal sensors for the visual detection of 
insect infestations and diseased plants was first established in the 1970s. 
Thermographic images are images that show a scene in relation to its color 
temperature. An indirect method of estimating a population of bark beetle size in 
a pine forest was demonstrated using thermographic images. The images were 
successfully demonstrated to observe and differentiate pine trees with moisture 
stress due to attacks by bark beetles. This technique was possible because the 
sick pine trees exhibited a higher canopy temperature, >40oC when compared to 
neighboring healthy trees, 35±2oC (Yigit et al., 2019 and Tavakoli et al., 2021). 
Recent advancement in thermographic imaging has also been used to directly 
count insect pest population. The study conducted by Najib et al. (2021a) has 
discovered that applying thermography imaging to infected fronds allows for the 
detection of bagworm populations, as their temperatures are slightly higher 
compared to that of the fronds. This method is effective only during the evening 
and afternoon when the bagworms' thermoregulation processes make them 
warmer, which can be detected using a thermal infrared (IR) camera. However, 
in some instances, the frond temperature closely matches the bagworm 
temperature due to water stress caused by the infestation. During hot seasons, the 
bagworms become more active as they move and feed aggressively to obtain 
water, exacerbating the water stress on the fronds.  

Image acquisition can be achieved using portable or handheld thermal 
sensors, or by employing thermal sensors integrated with optical systems 
mounted on aircraft or satellites (Chaki et al., 2020). Thermal imaging techniques 
can be applied in the field to detect infected trees (Horaisova and Kukal, 2016; 
Wang et al., 2020). Recent research by El-Faki et al. (2016) provided valuable 
baseline data on temperature profiles of red palm weevil (RPW)-infested date 
palms, aiding the development of a real-time sensor fusion system for non-
destructive early detection of insect infestations. In their study, date palms were 
intentionally infested with fertile males and females, and the effects of three 
infestation intensities were monitored over a 24-day period. Temperature 
measurements revealed that infested palms had temperatures of 33.22°C and 
30.08°C in two separate seasons, while healthy palms had lower temperatures of 
31.83°C and 27.56°C. These differences were significant during both seasons 
(first season: F = 6.14, df = 3, P = 0.009; second season: F = 3.89, df = 3, P = 
0.038). Bokhari and Abu Zuhira (1992) discussed the possibility of detecting 
physiological changes in infested palms. Several studies have shown that infrared 
(IR) cameras can detect temperature increases in infested palm trunks, with the 
most significant differences between infested and non-infested trees observed 
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between 11:00 and 14:00. The effectiveness of this method is also limited to the 
warm season. Traditional techniques for detecting Cowpea seed beetle 
infestations are both destructive and time-consuming. Chelladurai (2012) 
addressed this issue by using thermal images to differentiate between uninfested 
mung beans, beans infested with various stages of Cowpea seed beetles, and 
completely infested mung beans. Classification models, including linear 
discriminant analysis (LDA) and quadratic discriminant analysis (QDA), were 
used to analyze features extracted from thermal images. The LDA models 
achieved classification accuracies ranging from 55.24% to 77.84%, while QDA 
classifiers had accuracies between 75.45% and 91%. 

For insect pest detection using RGB imagery, the identification of insects 
such as bagworms (Lepidoptera: Psychidae) involves a four-stage image 
processing algorithm: 

1. Image Segmentation: The first stage involves developing an image 
segmentation algorithm to localize the region of interest (RoI) based on 
color processing. This data helps in tracking the bagworms by isolating 
them from the rest of the image. 

2. Shape Extraction: The second stage utilizes morphological operators to 
extract shapes and patterns of the bagworms, while removing non-
targeted regions from the dataset. This helps in refining the detection by 
focusing on the relevant shapes. 

3. Image Classification: In the third stage, a supervised classification 
algorithm is used to distinguish between the different stages of 
bagworms. This involves deep learning techniques like Faster Regions 
with Convolutional Neural Networks (R-CNN), coupled with a Region 
Proposal Network (RPN) to predict object bounds and exact scores at 
each position based on trained data specific to size and shape recognition. 

4. Counting and Analysis: The final stage involves distinguishing between 
living and dead larvae and pupae using motion analysis and false color 
analysis. A counting algorithm is then applied to enumerate the bagworm 
populations and categorize them into specified groups (Najib et al., 
2021b). 

In a related study, Kasinathan et al. (2020) explored insect classification 
and detection in field crops using machine learning with RGB images, focusing 
on insects in crops such as corn, soybean, and wheat at early growth stages. 
Different shape features were analyzed using various machine learning models, 
including Artificial Neural Network (ANN), Support Vector Machine (SVM), k-
Nearest Neighbors (KNN), Naïve Bayes (NB), and Convolutional Neural 
Network (CNN). Initial image augmentation techniques, such as resizing to 
227×227 pixels, rotation, flipping, and cropping, were employed to enhance the 
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training dataset, improving accuracy and reducing overtraining issues (Patil and 
Kumar, 2020; Preti et al., 2021). For instance, Figure 2 illustrates how an image 
of Nephotettix bipunctatus is augmented into multiple images using eight 
different operators. 
 

Figure 2. Image augmentation for insects’ detection using RGB images. Image 
by Kasinathan et al. (2020). 
 

Image augmentation is used to expand the training dataset of insect images. 
Shape features extracted from these images are then classified using machine 
learning algorithms such as Artificial Neural Networks (ANN), Support Vector 
Machines (SVM), k-Nearest Neighbors (KNN), and Naïve Bayes (NB). 
Convolutional Neural Networks (CNN) are also applied for comparative 
performance analysis. The classification accuracy of these different machine 
learning techniques is compared. The results demonstrate that the CNN model 
achieves the highest accuracy, with 91.5% for 9 insect classes and 90% for 24 
insect classes from different datasets.  

Another machine learning approach for insect pest recognition using RGB 
images was carried out by Lillesand et al. (2015), which incorporated adults and 
the early stages of group of insect pests, known as IP-FSL image data set. This 
research addressed the challenge of accurately classifying insect species for 
effective crop management. The difficulty arose from the resemblance between 
species at similar maturity stages. To tackle this, the study proposed a few-shot 
erudition approach. The researchers initially a novel insect dataset, named IP-
FSL, by selecting images from IP102. This dataset included 97 classes of adult 
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insect images and 45 classes of early-stage insects, totaling 6,817 images. They 
then introduced a few-shot prototypical network, which was evaluated against 
other state-of-the-art models using divergence analysis. The experiments 
involved separating adult insect classes from early-stage ones into distinct 
groups. The most successful results were achieved with an accuracy of 86.33% 
for adult insects and 87.91% for early-stage insects, both utilizing the Kullback–
Leibler divergence measure. These results are promising for crop management 
scenarios where key pests are rare and early detection is crucial. Future research 
avenues could involve assessing this approach in specific crop ecosystems and 
exploring cross-domain applications. 

 
 

 
 
Figure 3. Example of adult stage insect classification in 3-way, 5-shot and q = 
5. Image by Lillesand et al. (2015). 
 

Experiment II involves a sample classification task, as depicted in Figure 
3, focusing on adult insect identification. In this task, 15 query images are 
categorized into three classes. The performance results for the three-way scenario 
in Experiment II, presented in Figure 3, indicate that our approach achieved 
superior accuracy in insect recognition, reaching 77.97% in one-shot and 86.33% 
in five-shot scenarios using KL-divergence. In the five-way tasks, the optimal 
performance in one-shot was 66.4%, achieved with KL, and in five-shot, it 
reached 77.68% using IS-divergence, although KL demonstrated a closely 
competitive accuracy of 77.43% in the five-shot scenario. 
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Figure 4. Instance of early stage insect classification in 3-way, 5-shot and q = 5. 
Image by Lillesand et al. (2015). 
 

The process for establishing a three-way scenario is depicted in Figure 4, 
where 15 query images are divided into three task classes. In this setup, KL-
divergence demonstrated superior performance, achieving an accuracy of 
81.67% in one-shot scenarios and 87.91% in five-shot scenarios. For a five-way 
classification, KL-divergence also proved to be the most effective similarity 
measure, with accuracy rates of 69.06% in one-shot scenarios and 80.72% in 
five-shot scenarios. 

Anwar and Masood (2023) reported that the integration of proximal digital 
images (RGB) with machine learning (ML) methods was increasingly employed 
for pest detection. However, the diversity of species and conditions in different 
studies make it challenging to establish a thorough grasp of the latest 
advancements and current practices in this field. To address this issue, several 
steps was generated to support the work, including: 
Briefly Describe Relevant Investigations: Provide concise insights into some of 
the most notable research endeavors focusing on automated pest recognition 
using proximal digital images and ML. 

Offer a Unified Overview: Present a cohesive and comprehensive overview 
of the existing body of research in this domain. Emphasis will be placed on 
identifying and highlighting research gaps that persist in the current landscape. 
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Propose Targets for Future Research: Suggest potential areas for future 
exploration and investigation. By identifying gaps in current research, the article 
aims to guide and inspire further studies in this evolving field. 

In essence, this research provided a deeper and more integrated 
understanding of the advancements, challenges, and potential future directions in 
the field of automatic pest detection using proximal digital images and ML. 
Automating pest monitoring poses a formidable challenge. Despite the 
advancement of machine learning algorithms, creating precise systems with real-
world applications requires tools that are already accessible. The primary hurdle 
lies in gathering data that adequately represents the extensive variability 
encountered in real-world scenarios. However, with the proliferation of devices 
equipped with imaging capabilities and the refinement of mechanisms supporting 
citizen science, overcoming this challenge may become less significant in the 
foreseeable future. 
 
Standalone and network imaging technology for insect pest counting 
 

A standalone imaging system for insect pest counting is a system that 
counts insects using an algorithm applied to an image or series of images 
captured by an image sensor at a particular site. The image capture device usually 
used for such systems is RGB digital cameras or infrared digital cameras that can 
capture either still pictures or videos. A standalone system is a mobile system 
used at only a single location. On the other hand, a networked imaging system is 
an extended standalone system with multiple detection/imaging nodes that 
captures data and transmits the images back to a base node for pest detection and 
counting. Unlike the standalone counterparts, the imaging nodes of a network 
system are permanently installed at key locations within a plantation (Johannes 
et al., 2017). Several suchsystems (standalone setup followed by networked 
systems) developed using image sensors, wireless image sensor networks, 
infrared video thermography (IVT) and counting algorithms for automated insect 
counting systems are reviewed. Overall, these machine vision systems comprise 
an image/video capture setup linked to a processor that runs a counting algorithm 
based on the images received.  
 
Standalone imaging systems for insect pest counting 
 
Outline tracing algorithm for planthopper identification and counting 
 

A study undertaken by Qing et al. (2014) focused on the development of a 
portable automated device (Figure 5) for calculating the number of planthoppers 
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on rice stems in paddy farms in Zheijiang Province, Republic of China. The 
system comprises a digital camera equipped with WiFi (Samsung SH100), a 
smartphone (I100), a light source and an adjustable pole to locate the camera for 
capturing the planthopper images.  
 

 
 
 
Figure 5. Results on positive (a) and negative (b) samples using histogram of 
oriented gradient (HOG) descriptors. Image by Qing et al. (2014). 
 

A three-layer detection algorithm was developed to recognize the 
planthoppers from the captured images. The first layer consisting of the 
recognition step was applied using the AdaBoost classifier which involved 
outline tracing of the targeted insects from the complex background of rice plant 
surroundings. At first, a linear combination of the R, G, and B channels with 
integer coefficients was utilized to extract planthopper features. These features 
were then selected to create a weak classifier using the two-class variance ratio. 
A strong classifier was subsequently constructed by enhancing the weak 
classifier. For each incoming frame, a likelihood image of the object was created 
according to the classification results of pixels by the strong classifier. As a 
result, the recognition rate was between 90.9% to 95.5%, and the false detection 
rate was 77.6% to 97.7%. The second layer of recognition used histogram of 
oriented gradient (HOG) feature descriptor to identify the feature’s color 
gradient. The descriptor consists of grey space, 12 x 16 pixel blocks with four 6 
x 8 pixel cells, R-HOG blocks, nine coordination bins ranging from 0o – 180o, a 
vertical spacing pace of 8 pixels and a horizontal spacing pace of six pixels. From 
each image, their algorithm calculated 900 slope vectors (Figure 5). A Support 
Vector Machine (SVM) machine learning model was used to analyze the feature 
data in order to lower the false detection rate by eliminating water drops and 
reflection effects in the images. In order to further decrease the error detection 
rate, a third structure was incorporated with the sub-windows of the SVM 
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classifier to exclude non-target insects. The result showed a significant decline 
in error detection to 9.6% with a recognition rate of 85.2%. The trained dataset 
only classified one species, whiteback planthopper Sogatella furcifera. The other 
two species, N. lugens and L. striatellus were not trained in the algorithm. This 
resulted in low detection of all insect pest in paddy fields because more training 
of the classifier was required to count and recognize all three planthopper species. 
On the other hand, inaccurate detection of the targeted insect occurred due to the 
young stage and low planthopper densities. This can be solved through more 
dataset training of the classifier. Since RGB images were used, dark surroundings 
and shadows also affected the image quality which in turn produced low accuracy 
of detection (Patil and Kumar, 2020). 

From the trials, 92 images were captured in the paddy fields and the system 
can detect planthoppers with sizes ranging between 1 to 5 mm. The density of 
planthoppers found in the study is shown in Table 1. The study concluded that 
the error detection rate declines significantly for all of the classes using the three-
layer algorithms. 
 
Table 1. The density of rice planthoppers according to classes in the captured 
images of the study 

Classes No. of rice planthoppers Severity No. of captured images 
1 0-10 Low density 24 
2 11-20 Median density 21 
3 21-30 High density 24 
4 >30 Very high density 23 

Source : Qing et al. (2014). 
 
Infrared video thermography for detecting behavior of insects at their 
supercooling point 
 
 IVT has been used by Palmer et al. (2004) to determine the supercooling 
point (SCP) of Scorpion flies collected from the Alpine hills at Mount Mawson, 
Tasmania using thermal imaging technique. The SCP is a normal measure used 
to define the cold temperature threshold acceptance of arthropods before they 
freeze. The SCP of an insect is a stochastic incident that becomes increasingly 
likely to occur as the temperature drops below the insect's freezing point. The 
study as illustrated in Figure 6 was done on 13 adult Scorpion fly samples using 
a thermal infrared video camera (FLIR, Sweden) targeted to measure the insect’s 
body temperature.   
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Figure 6. A diagram of the experimental format typically illustrates the key 
components and their arrangement for conducting the experiment 
 
 The imaging setup consists of a shielded box that acts as a cooling slot. It 
is fabricated using a wooden external wall and a Styrofoam internal wall for 
insulation. The internal wall was wrinkled with a copper tube for coolant flow as 
a means of temperature control. At the lowest level of the chamber, a flat disc 
alum radiator was used for coolant flow. The inner chamber’s temperature was 
regulated using a heating and cooling circulator (JULABO, Germany). For 
imaging, a metal bracket was used to situate the FLIR camera at the top, whilst 
a 7 cm hole inside the chamber’s top was cut out for the camera’s lens. 
Meanwhile, the chamber’s width was covered using a nylon rig to protect the 
upper and bottom part of the chamber, with a 7-cm and 15-cm spacing above the 
radiator and beneath the camera lens, respectively. Each insect was put inside a 
small rectangular 4 x 4 x 3 cm3 alum cup. At the bottom, a 1.5 cm2 section was 
cut out to allow for the placement of two thermocouples to measure both air and 
ground temperatures. A portion of foam was used to cover the hole and to project 
a visible dark square at the midpoint of the cup. Hair elements were applied 
diagonally at the top to deter insects from escaping, and tape was used at the 
external side to prevent the samples from absconding (Palmer et al., 2004). A 
geometric calculation software was used to inspect the thermographic video 
images in order to observe the reaction of the insects. The software calculated 
the insect’s motion in 5 second intervals from the thermal video feed. For 
assessment, the walking speed of the insects was divided into two categories; 
slow walking, defined as moving at a rate of <3 cm per 5 seconds and fast 
walking at a speed of >3 cm per 5 seconds.  

The interactive and physiological reactions of 13 adult scorpion flies are 
subjected to a cooling frequency of 0.3°C/min starting at an initial temperature 
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of 3oC (Figure 7). The SCP, melting point of the insect’s body fluids and insect 
length were obtained by using the IR camera. The thermographic images were 
analyzed by observing the temperature range of individual insects due to the high 
frequency and narrow amplitude of the peaks observed on the graph. Based on 
the analysis, it was found that fast walking occurred when the temperature 
dropped to -5oC. At -7.8oC, the insect walked rigorously non-stop. At this point, 
nucleation has begun and the insect did not recuperate and died. This 
supercooling condition was presented as an exotherm. A sudden early increase 
in the insect’s body temperature was also observed as the temperature dropped. 
This was linked to an increase in hemolymph concentration, which blocked 
freezing of water in the insect’s body (Palmer et al., 2004). 
 
 

Figure 7. The behavioral and physiological reactions of an adult scorpion fly 
(Apteropanorpa sp.) to a cooling rate of 0.3°C per minute. Image by Palmer et 
al. (2004). 
 
 Furthermore, there were differences observed between the insect’s stress 
conditions during the slow and fast walking temperatures. The temperature range 
of fast walking was -0.8oC to -3.9oC, at a speed of 4 to 5 cm/5 seconds. The slow 
walking temperature was ranged from 3oC to -2oC, at a speed of <3 cm/5 seconds 
(Figure 8). 
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Figure 8. The physical and behavioral response of an adult scorpion fly 
(Apteropanorpa sp.) to a cooling rate of 0.3°C/min, as shown in the infrared 
image. Image by Palmer et al. (2004). Note: (A) At time zero, the insect’s 
temperature is around -8°C. (B) Five seconds later, the insect achieves its 
supercooling point, with the exotherm visible (marked by an arrowhead), 
affecting the frontal third of the abdomen (C and D). 
 

Five to ten seconds after the onset of the exotherm, ice nucleation spreads 
throughout the insect's body, raising its temperature to approximately 0°C. At 
this stage, the insect's infrared emission matches that of the background, as 
indicated by the false color representation. 

A similar study was reported by Gallego et al. (2017) to investigate 
response to low temperatures of the Thorectes lusitanicus (a beetle species) 
collected from the south of the Iberian Peninsula. Furthermore, the cold response 
assay was conducted, starting from chill coma temperature (CCT), towards SCP. 
The CCT is a condition when chill-susceptible insects enter a reversible paralytic 
state at mild low temperature. Then, the cooling rate between these two points 
was calculated. Additional threshold temperatures, including the onset of stress 
temperature, heat regulation temperature, critical thermal maximum, and upper 
lethal temperature, were determined by gradually increasing the temperature at a 
rate of 1.5°C per minute, starting from 25oC onwards. Based on the video images, 
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the mortality due to chilling before freezing was less found in male groups after 
the insects walked around at the SCP. 

In conclusion, IVT coupled with a powerful image processing algorithm is 
a powerful noninvasive tool for assessing the behavior and physiological 
responses of beetles simultaneously to the effect of temperature variations. The 
assessments of SCPs and lower lethal temperatures obtained in this study are 
more biologically relevant because the IVT permits unrestricted movement of 
the insects, closely mimicking their behavior in their natural environment. 
 
Infrared video thermography and deep learning algorithm for automated 
detection and enumeration of bagworms, species of Metisa plana Walker  
 

A study by Najib et al. (2021a) proposed how a non-invasive bagworm 
detection system based on infrared thermography (IRT) still images obtained 
from an IR video camera with a customized image processing algorithm could 
be achieved. Initially, 30 sets of bagworm samples from all larval stages of the 
Metisa plana and the pupal stage were collected to record their temperature and 
emissivity. A thermal IR camera, model T 440 (FLIR, USA), with an infrared 
spectral range of 7.3–13 μm was used for this purpose. Two different infestation 
sites were selected for the test. The outdoor parameters, including atmospheric 
temperature, humidity, and emissivity, were measured using a Hygro-
thermometer (Extech, USA) and the parameters were set and stored inside the 
thermal camera prior to the experiment. A measurement tape was used to 
calculate an imaging distance of 50 cm. 30 thermal images were captured for a 
sample size, n=210. Each sample image capture was repeated three times for 
image averaging to lower noise. The images showed the reflected apparent 
temperature of the samples measured against an Aluminum background of 
31.7oC. The resulting image was used to determine the bagworm’s emissivity. 
Thermography image capture experiments were conducted next during the 
evening, night and morning. The resulted images showed clear and sharp 
thermographic images (Figures 9, 10 and 11) at a distance of 50 cm from the 
objects. The bagworms exhibited a yellowish color in the pseudo-colors as 
compared to the fronds despite in the daytime.  
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Figure 9. Thermal image of bagworms and the surrounding or frond taken in the 
evening. Image by Najib et al. (2021a). 
 
 
  
 
 
 
 
 
 
 
 
Figure 10. Detection of objects/bagworms using the thermal IR camera during 
the nighttime session. Image by Najib et al. (2021a). 
 
 
 
 
 
 
 
 
 
 
Figure 11. Bagworm image captured under thermal imaging during the morning 
session. Image by Najib et al. (2021a). 
 

This condition revealed that the bagworms’ temperature was hotter 
compared to the fronds in all of the sessions of the experiment, especially in the 
morning. This was due to the surrounding and frond temperature, which are 
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cooler in nature when compared to the bagworms’ which showed probability 
value, p < 0.05. With 30 repetitions, it was revealed that the bagworm surface 
exhibited emissivity values of 0.88 ± 0.01 and 0.89 ± 0.01 W/(cm2·micron) 
(Table 2). The obtained results were further used in the counting algorithm for 
population estimation.  
 
Table 2. The mirrored apparent temperature and emissivity of M. plana 

Bagworm ID Reflected apparent 
temperature, oC 

Object surface 
temperature/Tape 
temperature, oC 

Emissivity, ϵ,  
W/(cm2·micron) 

1st larval instar 30.0±1.1 31.5±1.3 0.88±0.01 
2ndlarval instar 29.9±1.1 32.7±1.1 0.88±0.01 
3rdlarval instar 31.7±1.3 34.1±1.0 0.89±0.01 
4th larval instar 31.6±1.0 33.2±1.5 0.89±0.01 
5th larval instar 31.7±1.1 31.6±1.3 0.89±0.01 
6th larval instar 30.5±1.2 31.8±1.1 0.89±0.01 
7th larval instar 31.0±1.1 33.0±1.0 0.89±0.01 
Pupal stage 29.8±1.0 33.5±1.1 0.89±0.01 

Source: Najib et al. (2021a).  
 

The study was further expanded to evaluate the effectiveness and accuracy 
of a deep learning image processing algorithm designed for detecting and 
counting bagworm populations in infested oil palm plantations (Najib et al., 
2018). Videos of a site with bagworms were recorded using the same 
thermographic digital video camera. The camera was positioned at distances of 
30 cm and 50 cm from the subjects to account for variations in lighting conditions 
and shadowing (Figure 12).  
 
                                                      
 
 
 
 
 
 
 
 
 
 
Figure 12. Camera distance controlled for better detection. Image by Najib et al. 
(2021b). 
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The outside temperature and bagworm’s emissivity value were measured 
using the IR video camera. Results showed that a temperature gradient was 
clearly visible between the bagworms and the background. A CNN algorithm 
was employed to detect, classify, and count bagworms on-site. This was achieved 
by training the dataset of thermographic images for object detection and 
recognition. The CNN deep learning technique was combined with a Region 
Proposal Network (RPN) as proposed by Ren et al. (2015) to predict object 
boundaries and objectness scores for each position of the bagworms. Using 
approximately 6,000 images and live video feeds from the thermal camera, the 
dataset was manually categorized into images with and without bagworms. 
Additionally, images containing detected bagworms provided information on 
bagworm size, which was extracted through pixel segmentation within a 
Cartesian coordinate system. Identification boxes are drawn enclosing the 
bagworms in each segment followed by counting of bagworms was carried out 
initially by localizing the contours and followed by masking the original images 
based on the various sizes and rectangular shapes that represents the orientation 
and stage of the bagworm. The deep CNN percent of detection improved greatly 
up to 88-100% accuracy (Table 3).  
 
Table 3. Deep learning performance at different camera distance  

   Camera  
   distance 

  Algorithm    detection Human detection % detection 

30cm 
30cm 
30cm 

       9 10 90 a 
     10 10 100 b 
      9 10 90 a 

50cm 
50cm 
50cm 

      8 10 80 a 
      9 10 90 b 
      8 10 80 a 

Source : Najib et al. (2021b). 
 

A camera distance of 30 cm resulted in a higher detection rate due to clearer 
input images for the algorithm. The system demonstrated a significant difference 
in detection accuracy between 30 cm and 50 cm camera distances, with a 
calculated probability of p < 0.05 for the closer distance. Analysis of different 
snapshot sessions revealed that bagworms were more effectively detected during 
evening and afternoon compared to night, midnight, and morning sessions, 
reflecting variations in emissivity, solar radiation, and snapshot distance, with 
accuracy rates of 74% and 85%, respectively. Additionally, the most reactive 
pixels in false color mode, observed during evening and afternoon snapshots, 
were 180 and 220, respectively, leading to better recognition results (Najib et al., 
2021b). 
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In another work, the reflector method was used to determine the reflected 
apparent temperature and emissivity of M. plana through thermographic 
measurement techniques (Najib et al., 2021a and FLIR System, 2016). To obtain 
thermal images, a medium sized aluminum foil was cut and crumpled, 
uncrumpled and wrapped around a piece of same sized cardboard. The bagworm 
samples were put in front of the wrapped cardboard and the aluminum side was 
pointed to the camera. The temperature of the aluminum foil was measured and 
recorded from images of the thermal camera. Bagworm samples from the larval 
and pupal stage of M. plana were collected and measured to obtain 30 data points 
on apparent temperature and emissivity of the bagworms. 

A piece of electrical tape with a high emissivity value was applied to the 
sample. A video feed was recorded, and thermal images were extracted from the 
video for analysis. The tape's emissivity was set to 0.97, and its temperature was 
measured using the Spot measurement function. This temperature was recorded, 
and the sample was positioned towards the camera. The emissivity was adjusted 
until the temperature reading aligned with the initial measurement. The final 
emissivity of the sample was then recorded. Accurate temperature measurement 
of the bagworms’ region of interest is crucial for correct stage identification and 
high detection accuracy. The heat emissivity data is reflected in all pixels of the 
thermal infrared (TIR) images, which are captured without physical contact. To 
improve pixel reliability, random noise can be reduced by averaging images 
taken under consistent conditions (Najib et al., 2021a). 
 
Investigating deep ensemble models for insect and pest detection in images 
 

A transfer learning-based ensemble model has been developed for insect 
and pest detection. This model combines pre-trained architectures like VGG16, 
VGG19, and ResNet50 with a voting classifier ensemble approach. These pre-
trained models are used to process the training dataset in a parallel pipeline, 
which is then integrated with the Ensemble Voting Classifier to generate final 
predictions for the input samples. In the study by Anwar and Masood (2023), the 
IP102 dataset—comprising 75,222 images of insects and pests—was utilized. 
The key challenge of this dataset is its 102 classes of similar-looking pests and 
insects, which any model must differentiate. The study investigated an ensemble 
model that integrates pre-trained networks such as Inception v3, Xception, 
VGG19, VGG16, and ResNet50. The ensemble of VGG16, VGG19, and 
ResNet50, combined with the voting classifier, achieved the highest 
performance, reaching an accuracy of approximately 82.5%. The findings 
demonstrate that this ensemble model effectively and reliably classifies various 
insects within the large IP102 dataset, which has many classes and variable 
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sample distributions. This robust detection model could be further enhanced by 
incorporating object detection algorithms like YOLO and Faster RCNN, as well 
as exploring other optimization techniques, parameters, and CNN models like 
NasNet (Huddar et al., 2012), to improve performance given the dataset's 
imbalance. 
 
Monitoring method based on backscattered light in open spaces 
 

There are two primary concepts for monitoring based on backscattered 
light. Collecting and analyzing the backscattered light from laser-insect 
interactions allows for real-time monitoring of insects. Backscattered light 
provides more detailed information compared to light extinction, as coherent 
scattering generates more harmonic overtones. While backscattered light-based 
monitoring systems can also be configured as electronic traps (Rigakis et al., 
2019), their key advantage is the capability for real-time observation of insect 
clusters in open environments (Brydegaard et al., 2020). Different types of lasers 
are utilized in these monitoring systems, which can be categorized into two main 
types: pulsed and continuous laser-based monitoring systems. 
 The pulsed laser-based system is primarily employed to monitor insect 
activity in open spaces. This system is directed towards the insect’s active area, 
and the distance between the system and the target insect is determined using the 
time-of-flight principle. In practice, background elements, such as vegetation, 
can complicate the extraction of insect signals. For example, Bender et al. (2003) 
encountered significant background interference when using the pulsed laser-
based system for insect monitoring. To mitigate this, it is important to simplify 
the background or position the optical path away from the ground. In cases where 
the background was simplified, researchers successfully monitored honeybee 
activity on a feeding platform located 1300 meters away using a 355 nm laser 
operating at 30 pulses per second (1–40 mJ). Additionally, pulse energy and 
divergence angle directly influence the monitoring distance; as the distance from 
the target increases, the signal-to-noise ratio decreases. 
 The continuous-wave laser-based monitoring system utilizes Scheimpflug 
lidar for insect detection in open spaces, based on the triangulation ranging 
principle. In this system, the laser emitter and telescope are aligned at a specific 
angle, with the imaging detector positioned behind the telescope at a different 
angle. This setup employs a unique optical arrangement to achieve infinite focal 
depth (Brydegaard et al., 2017). The scattered light from various distances is 
focused onto different points on the detector. By measuring the distance from the 
laser to a reference plane (e.g., a black neoprene foam-covered board) (Kouakou 
et al., 2020), along with the detector’s pixel size and the separation between the 
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emitter and collector, the system calculates the target distance through triangular 
inversion. This approach enables a high sampling rate in the kHz range, but the 
range resolution is nonuniform and decreases with increasing target distance 
(Brydegaard et al., 2014; Brydegaard et al., 2018; Brydegaard et al., 2021; 
Palmer et al., 2004). 

Image sensor network for insect pest counting  
 
Wireless image sensor network for plantation insect trap monitoring 
 

A wireless image sensor network (WISN) is essentially a network of 
wireless cameras that are interconnected to one another or to a central command 
node. In its simplest form, a WISN can consist of a wireless camera as the 
imaging node and a command node that controls the imaging node. 

A two-node Wireless Insect Sensing Network (WISN) has been developed 
to monitor the population dynamics of the oriental fruit fly in the Republic of 
China. This system comprises two modular components: the Remote Monitoring 
Platform (RMP) and the Host Control Platform (HCP). The RMP is equipped 
with an MSP430F449 core-processing chip, which collects sensory data on 
temperature, humidity, wind speed, and the number of trapped flies. The system 
outputs a short message containing this sensory data and the number of insects 
captured. The HCP node processes this message after receiving it from the RMP 
node. The trapping device uses a double-counting mechanism to accurately count 
trapped flies as they cross an infrared interruption sensor (Anwar and Masood, 
2023). To prevent the same fly from being counted multiple times, a gate or 
inhaler is typically used, but to simplify and reduce costs while maintaining 
accuracy, a double-counting solution was designed. This solution includes a set 
of optical sensors placed along the trap pathway. The system's counting 
reliability and accuracy are approximately 95% (Huddar et al., 2012). 

An 11-node WISN that is affordable and reliable to carry out the task of 
inset pest population estimation for a particular insect has been developed by 
Otoniel et al. (2012). The autonomous monitoring system utilizes 10 low-cost 
RGB image sensor (C1110F32 by Texas Instruments) that is equipped with a low 
power communication circuitry operating in the sub-1 GHz range, with 32 kB 
integral programmable flash memory and 4 kB of RAM (Figure 13).  
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Figure 13. Image sensor developed by Otoniel et al. (2012); wireless sensor 
board 
 

For counting the population of the target species, each wireless image 
sensor node is fixed inside an insect trap that is fixed at key locations in the field. 
All 10 nodes are connected to a remote command node to form a WISN for insect 
pest population estimation. The command node receives images from all of the 
10 image sensors and the images are analyzed to identify and count the number 
of insects at each node and subsequently give an accurate estimate of the 
population. Since the number of nodes is directly proportional to the power 
consumption, the imaging nodes are all put into sleep/standby mode when image 
acquisition and transmission has finished. Figure 14(a) shows the timing profile 
during the running mode. Operations CAM_Connect shows the time required to 
connect the camera nodes when the imaging node wakes up and enters the 
running mode. The image acquisition time (T_Get_Slice) is the time required for 
the command node to acquire the images from the camera nodes. Figure 14(b) 
shows the measured CAM_Connect time for an imaging node to wake up and 
connect to the command node for four image sizes. On average, for all image 
sizes, it takes 190 ms for connecting a node. T_Get_Slice for the largest image 
size is 700 ms. Therefore, the time actually required to obtain an image from 1 
node is 890 ms. The timing algorithm used in this work greatly reduces the time 
for each node to be working, therefore only a 1,200 mAh battery is required at 
each imaging node. 
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Figure 14. (a) Running mode timing profile with the new SPI camera, and (b) 
the absolute time reductions found at CAM_Connect and T_Get_Slice operations 
for each image size. Result from Otoniel et al. (2012). 
 
Wireless RGB image sensor network for detection of fruit flies 
 
 A study undertaken by Priya et al. (2013) focused on an automated system 
for monitoring fruit fly population in a crop field using a wireless sensor network. 
The system aims to assist field advisory staff to be more alert when fruit flies 
attack the crop. An identification algorithm was developed by applying machine 
vision methods. The system is able to capture and transfer RGB images from 
several point locations in the crop field. The control station than uses the images 
to estimate the insect density to sound a warning alarm when the number of the 
population goes above a pre-defined threshold level. 

The target species in this study is the red palm weevil, Rhynchophorus 
ferrugineus. The image spatial resolution (size) can be varied from 80 x 64, 160 
x 128, 320 x 240 and 640 x 480 with a timelapse of 0.5, 1, 3, 6, 12 and 24 hours 
between captured images (Figure 15).  

Priya et al. (2013) focused also on an 11-node WISN designed to monitor 
fruit fly population in a vineyard. The 10 wireless imaging nodes utilizes the LS-
Y201 camera that transfers JPEG images through serial communication cables 
(UART) to a Zigbee transceiver module (Figure 16).  
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Figure 15. Autonomy of the image sensor fortified with 1,200 mAh battery (80% 
efficiency), set at variation of image format sizes and snapshot frequencies. 
Result from Priya et al. (2013). 
 
 
 
 
 
 
 
 
 

Figure 16. Receiver section developed by Priya et al. (2013) 
 

The command node is an Android smartphone that hosts a customized fruit 
fly detection and counting algorithm. The image processing algorithm uses four 
steps to identify fruit flies from the images. As usual, step is focused on image 
or object pre-processing, second step is segmentation, third step is subjected to 
colour space alteration and last step is for identification. Steps 1, 2 and 3 are 
carried out to condition the images prior to identification and counting. In step 1, 
the RGB input images obtained from each image sensor node is converted to gray 
scale to better differentiate the insects in the scene. Step 2 is done to divide the 
images into smaller segments ad step 3 is done to further denoise the segmented 
grey scale images. Step 4 uses edge detection to outline and identify the insect in 
each segment (Figure 17). Finally, a counting algorithm implemented counts the 
number of insects detected by edge detection (Figure 18). The accuracy of this 
system is acceptable at around >80% (Priya et al., 2013). 
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Figure 17. Simulation image as an output. Image by Priya et al. (2013). 
 

Figure 18. Time evolution showing the number of insects automatically detected 
and counted during simulation. Reported by Priya et al. (2013). 
 
Real-time insect monitoring using laser remote sensing 
 
 Another new approach in monitoring insect pests was studied and 
investigated by Wang et al. (2023) via laser remote sensing. This research 
investigates real-time, laser-based monitoring techniques that facilitate the online 
observation of insect activity and examine how insect populations respond to 
environmental changes, such as weather conditions. The electronic trap system 
tracks insects as they move through the trap area, recording and analyzing the 
extinction and scattering effects caused by the insects to gather information about 
them. 
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The optical system utilizing an electronic trap allows for direct insect 
monitoring. As an insect moves through the "trap" area between the laser source 
and the system's photodetector, its body and wings obstruct or scatter the light, 
leading to variations in light intensity detected by the photodetector. These 
changes can be captured and processed to monitor individual insects. This 
electronic trap-based monitoring method is widely used in fields like agricultural 
entomology. For instance, it can be integrated with the Electric Spark Insect 
Control System (EDICS) to classify insects near the trap and selectively target 
pests (Chen et al., 2014a). In such systems, the laser beam is shaped and 
homogenized using a lens, with the probe volume typically exceeding ten cubic 
decimeters (Chen et al., 2014b). The varying body structures and sizes of insects 
provide a basis for identification (Balla et al., 2020). The monitoring system 
developed by Jiao et al. (2018) analyzes the dynamic fall patterns of insect 
specimens, effectively distinguishing between different sizes. Their system 
achieved counting and classification accuracies of 98% and 86.7%, respectively, 
for four pest types. 
 
Internet of Things (IoT) applications for insect monitoring 
 

Ramalingam et al. (2020) developed an Internet of Things (IoT) system for 
insect monitoring, as depicted in Figure 19. This system employs a four-layer 
IoT architecture, consisting of the perception, transport, processing, and 
application layers. The perception layer is equipped with a small, low-energy 
camera (image sensor) that captures images of insects. This camera, which 
includes Wi-Fi capability, transmits the images to the processing layer via the 
transport layer for remote monitoring and identification. The transport layer 
facilitates the connection between all IoT devices (image sensors) across 
different perception layers. In the processing layer, detection and classification 
algorithms analyze the captured images. Finally, the application layer provides 
users with information regarding the status of the insect trap (Jian et al., 2008). 

 
A vision-based approach for detection of flying insects 
 
 Zhong et al. (2018) developed a trapping system for recognizing and 
counting flying insects using vision-based techniques. The system employed a 
camera to capture real-time images of insects on a yellow sticky sheet. These 
images were then analyzed using a detection system implemented on a Raspberry 
Pi computer. The object detection relied on YOLO (You Only Look Once) 
technology, while classification and counting were performed using a Support 
Vector Machine (SVM) that utilized global features. The image acquisition block 
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ensures clear image capture, which is then processed by the YOLO block for 
initial detection and coarse counting. The training dataset comprised 10,000 
manually labeled images, each measuring 30×30 pixels. The feature extraction 
block quantifies detected objects, and the SVM performs classification and 
precise counting based on these features (Wang et al., 2012; Larios et al., 2010). 
Zhong et al. (2018) noted that images from the yellow sticky trap could be 
influenced by light variations and contaminants such as dead leaves, insect 
excrement, mud spots, and water droplets. To address these challenges, they 
utilized the YOLO deep learning model, as proposed by Redmon et al. (2016). 
This single convolutional network model adapts well to complex environments, 
efficiently predicting class probabilities and multiple bounding boxes 
simultaneously for object detection and recognition. Unlike methods relying on 
sliding windows or region proposals, YOLO processes the entire image during 
both training and testing, which enhances efficiency. Figure 20 illustrates the 
YOLO detection process: (a) dividing the input image into S×S grids, and (b) 
predicting bounding boxes for objects whose centers are within each grid. The 
images were labeled with the LabelImg tool (Tzutalin, 2022), and data 
augmentation techniques including contrast adjustment, translation, rotation, 
scaling, flipping, and noise addition were applied during training to prevent 
overfitting. The system's detection and recognition cycle on the Raspberry Pi 
took approximately 5 minutes, achieving an average counting accuracy of 92.5% 
and an average classification accuracy of 90.18% (Lin et al., 2006; Lello et al., 
2023). 
 

 
Figure 19. A full diagram of IoT-based insect pests recognition system 
(Ramalingam et al., 2020) 
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Figure 20. The YOLO recognition process for flying insects by Zhong et al., 
(2018) 
 
Similarity between all imaging systems 
 

All of the imaging-based insect detection and counting systems featured in 
this review is suimmaerized in Table 4.  
 
Table 4. Comparison of imaging-based insect detection and population size 
estimation system 

References 
Image Type 
(RGB/Therm
al) 

Target Species Counting Method Accuracy 

Palmer et al. 
(2004) Thermal Scorpion fly 

Based on 
temperature 
gradient of the 
objects 

75% 

Jian et al. 
(2008) RGB Oriental fruit fly Double counting 80% 

Otoniel et 
al. (2012) RGB Red palm weevil WISN 95% 

Priya et al. 
(2013) RGB Fruit fly 

MV through 
image 
segmentation 

80% 

Qing et al. 
(2014) RGB White back 

planthopper SVM 91-96% 

Gallego et 
al. (2017) Thermal Beetle Temperature 

gradient 85% 

Najib et al. 
(2021b) Thermal Oil palm bagworm 

 

Segmentation and 
classification 
based on 
temperature and 
color gradients 

74-85% 

Najib et al. 
(2021a) 

RGB 
 Oil palm bagworm Deep learning 87.5% 

 



 
 

 
 

2008 

Wang et al. 
(2023) 
 
 

RGB 

Ten species of 
insects, including Ae. 
Aegypti, six of which 
are of the same genus 
Crapholitha molesta 
LeafhopperDichocro
cis punctiferalis 
Cotton bollworm 

Electric Spark 
Insect Control 
System (EDICS) 
to classify insects 
close to the trap 
and selectively 
kill pests 
 

99.4% 
 
 
 
 
 

Ramalinga
m et al. 
(2020) 

RGB Environment and 
farm field insects 

model Faster 
RCNNResNet50 94% 

Zhong et al. 
(2018) RGB Flying insects YOLO and SVM 

92.5% 
(counting) & 

90.2% 
(classification) 

Anwar and 
Masood 
(2023) 

RGB 

Yellow Rice Borer, 
Small brown plant 
hopper, Army Worm, 
Longlegged spider 
mite, Rice 
Leafhopper, Legume 
Blister Beetle, 
Xylotrechus, Meadow 
Moth, Salurnis 
marginella Guerr, 
Panonchus Citri 
Mcgregor 

Ensemble Voting 
Classifier 82.5% 

Brydegaard 
et al. (2020) RGB 

Insects active over 
the open farmland 
space. Insects active 
near a village 

Backscattered 
lightbased 
(Continuouswave 
laser) 

Observed and 
recorded the 
spatiotemporal 
activity 
patterns of 
clusters of 
diverse insects 
with different 
modulation 
power spectra. 

     
RGB imaging system has resulted in high detection percentage or high 

accuracy in insect pest detection (Table 4). By applying SVM, DL and WISN 
with specific algorithms, high accuracy of images was achievable, with 96%, 
87.5% and 95% detection, respectively. Thermal imaging could be used or 
applied for insect detection; however, it needs more supporting materials to 
enhance the detection. Detail work should be set up and arranged for thermal 
imaging because it involves other variables such as surrounding temperature, sun 
radiation, emissivity of targeted objects and accuracy of thermal infrared camera 
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during snapshot (Aakif and Faisal, 2015; Gomes and Borges, 2022; Barbedo et 
al., 2020 and Lello et al., 2023). 
 
Research gaps and way forward 
  

Both standalone and networking imaging technologies have their own 
characteristics and can be deployed for monitoring insect pest populations based 
on user’s requirement and preference. In a standalone work, the three-layer 
detection adapting Adaboost and SVM classifiers (Patil and Kumar, 2020), 
despite the small size of the rice planthopper (ranging from 1 to 5 mm) and the 
complex paddy field environment, the system can achieve an 85.2% detection 
rate and a 9.6% false detection rate. This effective system integrates a handheld 
device for capturing images of rice planthoppers on rice stems with a software 
system designed for automated counting of the insects. The system is simple and 
easy to repeat, as well as following the current trends in image processing 
analysis.  

The system by Palmer et al. (2004) is quite specific because it uses IVT 
technique to determine the SCP of target insect (Scorpion flies). The IVT is good 
but commandable as it combines with an image processing algorithm as a non-
invasive tool to investigate the effect of temperature variations towards the 
behavioural responses of insects. This technique can still be practiced but 
requires further innovation and updating due to expansion of image processing 
technique to cater for latest features in automated tracing of insects.  

The use of IRT system (Najib et al., 2018 and Najib et al., 2021a) for 
bagworm detection is promising with good results. The system follows the 
thermographic measurement technique (FLIR System, 2016) which includes 
resolve of mirrored apparent temperature and emissivity of the insect 
(bagworms). Currently, the use of IRT is progressing slowly with combination 
of image processing algorithm for detection purposes. This is due to cost of 
operation and maintenance will increase, if the planters moving towards the 
application of high-end technology. Indeed, the snapshot distance is a key factor 
influencing the detection accuracy. In recent study, during variables controlled 
such as light, vibration, colour and close condition of the ground-based device 
(using imaging chamber), the bagworm can be detected or spotted through the 
false colour mode in the most reactive pixels and resulted in up to 85% of 
detection accuracy. As such, the technology has a bright future to be expanded 
for identification of objects namely insect pests, not only in Southeast Asia region 
but can be extended to other tropical countries as well.  

Another system covers WSN (Otoniel et al., 2012) utilizing a low-cost 
image sensor and paired with a wireless low-power sensor node. The system, 
detected and captured the trapped red palm weevil using the sensor and linked 
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with other image sensor node, must be installed in the radio coverage, in order to 
send the images completely to the control station. In this case, wireless network 
coverage is important and crucial to enable successful and proper 
communication. The monitoring system in a modular platform equipping with 
two parts, RMPs and HCP (Anwar and Masood, 2023) offers reliable and real 
time confidence data at around 95% detection accuracy for fruit fly. This 
performance is achievable by preset time intermission via GSM module. In other 
case, the node communication through Zigbee Transceivers was implemented 
Priya et al. (2013), allowing a warning system to farmers when fruit flies attack 
the crop. The master node is hosted in an Android phone for network connection, 
together with ten number of client nodes installed for monitoring stations. Again, 
it is crucial and compulsory to ensure the power of connectivity among the nodes 
to ensure achievable data transmission. 

The insect detection and counting systems developed thus far either using 
RGB or thermographic images have shown promising progress and workable. 
Nevertheless, there remains potential for further enhancement. For example, 
robustness of the camera setup can be improved in terms of object distance. An 
autofocus system can be added after the possible detection of a target insect in 
order to zoom and focus the imaged insect more to increase detection accuracy. 
From the R&D and commercialization perspectives, imaging technology for 
insect pest detection and counting should be further explored such that traditional 
labor-intensive and costly methods of detecting and counting insect pests can be 
simplified.  

Nevertheless, as detailed throughout this article, numerous research gaps 
persist and demand attention. These gaps signify that automation of pest 
monitoring will remain as an engaging and critical research subject for years to 
come. The evolution of technology, coupled with ongoing research efforts, holds 
the promise of addressing these gaps and further advancing the field of automated 
pest monitoring. Therefore, it is concluded that the use of Infrared Video 
Thermography at the front end of a pest counting system is a fast, accurate and 
robust method for pest detection because the images analyzed is robust to 
background temperature. On the other hand, RGB Imaging is also widely used 
as a means for insect pest detection and is preferred because of its cost 
effectiveness when compared to Infrared Thermography. Nevertheless, both 
imaging methods are coupled with wireless network and customized object 
detection algorithms to achieve precision counting of pest. 

The insect pest detection by different imaging technology needs further 
research to increase efficiency or suitability to detect such species of insects. The 
traditional or manual monitoring technique is labour intensive and costly and 
leads to poor data collection in the field. To overcome these problems, the 
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standalone, network and RGB imaging methods were the application of several 
technologies discussed in this paper can be practiced, such as the infrared 
thermographic technique, IVT, wireless network sensors, and others for 
observing, detecting, and counting insect pests in different infected areas. 
Although these approaches have been introduced many years before, however, 
the technology adaption amongst the users in agriculture fields are quite slow 
and challenging due to high cost incurred during operation and maintenance of 
the devices system. In this situation, a full support by governors may fasten the 
technology adaption especially among the smallholders. Furthermore, another 
practical way is by renting the device to the planters and the agent/producer will 
provide service of maintenance under contract of agreement, for a certain time 
frame. Another program is by subscription scheme, whereby the scheme can play 
a pivotal role in shaping the financial stability, customer relationships, and 
overall success of a business by providing a steady revenue stream, fostering 
customer loyalty, and enabling continuous improvement and adaptation to 
market dynamics. Subscription models encourage ongoing engagement with 
customers. Businesses have the opportunity to continually provide value, 
updates, and improvements to keep subscribers interested. A way forward to 
invent creative technique by integrating an automatic detection system and 
sensors for monitoring insect pest populations is highly recommended to ensure 
a high level of confidence data from the field at a low capital cost. Indeed, 
application of the recent technology on insect detection system is required and 
need a support from government in order to realize and moving towards 
Agriculture 4.0 mission as well. 
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